Expanding Combined Heat and Power in Iowa

DOE State Energy Program
Central Iowa BOMA Meeting

Iowa Energy Office
Iowa Economic Development Authority
Presentation Team

Shelly Peterson, Iowa Economic Development Authority, State Energy Office
shelly.peterson@iowa.gov
515-725-0418

Clifford Haefke, Energy Resources Center, University of Illinois at Chicago (U.S. DOE Midwest CHP Technical Assistance Partnership)
chaefkl@uic.edu
312-355-3476
CHP: An Iowa Example
CHP: An Iowa Example

Heat Recovery Equipment

- Radiators
- Exhaust Heat
- Engine Heat

- Natural Gas: 10.5 MMBtu/hr
- Electric Power: 4.1 MMBtu/hr
- Hot Water: 5 MMBtu/hr

Engine Generator
CHP: An Iowa Example

University of Iowa/Oakdale Research Park Campus Utilities

Legend:
- Green: Electrical
- Orange: Steam
- Blue: Chilled Water
- Magenta: Hot Water
- Light Blue: Synthesis Gas
Commercial sector: 2nd largest for potential CHP projects in Iowa (behind industrial)

Late 2015, CHP Resource Guide available at IEDA website:
- Vendors, engineers/consultants, financing contacts, permit guidance
Combined Heat and Power (CHP)

- Concepts and Benefits
- Emerging Drivers
- Opportunities in the Commercial Market Sector
Energy Resources Center (ERC)

- Based out of the College of Engineering at the University of Illinois at Chicago (UIC)
- Founded in 1973 as a “fast response” team capable of extending technical expertise, advice, and professional assistance to various organizations related to energy efficiency and the environment
- Expertise areas include energy efficiency, distributed generation, utilities billing management, and biofuels and bioenergy.
- www.erc.uic.edu
Market Opportunity Analysis
Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors.

Education and Outreach
Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, end users, trade associations, and others.

Technical Assistance
Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the development process from initial CHP screening to installation.

http://www.energy.gov/chp
Fuel Utilization by U.S. Utility Sector

More than two-thirds of the fuel used to generate power in the U.S. is lost as heat.

CHP: A Key Part of Our Energy Future

- Form of Distributed Generation (DG)
- An integrated system
- Located at or near a building / facility
- Provides at least a portion of the electrical load and
- Uses thermal energy for:
 - Space Heating / Cooling
 - Process Heating / Cooling
 - Dehumidification

CHP provides efficient, clean, reliable, affordable energy – today and for the future.

Benefits of CHP

- CHP is *more efficient* than separate generation of electricity and heat
- Higher efficiency translates to *lower operating cost*, (but requires capital investment)
- Higher efficiency *reduces emissions of all pollutants*
- CHP can also *increase energy reliability and enhance power quality*
- On-site electric generation *reduces grid congestion and avoids distribution costs*
Emerging CHP Drivers

- Benefits of CHP recognized by policymakers
 - 2012 Executive Order to accelerate investments in industrial EE and CHP set national goal of 40 GW of new CHP installations by 2020
 - Midwest SEOs exploring CHP opportunities
 - Policy Makers being educated on impacts of State Portfolio Standards (RPS, EEPS, APS), tax incentives, grants, standby rates, net metering, etc.

- Favorable outlook for natural gas supply and price in North America

- Utilities exploring and engaging in CHP opportunities
 - Utilities owning and partnering on CHP projects
 - CHP being explored and implemented in utility energy efficiency programs

- Opportunities created by environmental drivers

- Energy resiliency and critical infrastructure

- Other (LEED, Energy Star, net zero facilities, etc.)
CHP Is Used at the Point of Demand

- 4,300 CHP Sites (2013)
- 82,700 MW – installed capacity
- Saves 1.8 quads of fuel each year
- Avoids 241 M metric tons of CO₂ each year
- 87% of capacity – industrial
- 71% of capacity – natural gas fired

Source: ICF International
Iowa CHP Market Status

- **Number of Existing CHP Projects**: 37 sites¹
- **CHP Generating Capacity**: 633 MW¹
- **CHP as % of Total Electric Generation**: ~4 %²
- **CHP Technical Potential**: 1,587 MW³

Table: Iowa CHP Technical Potential (< 100 MW)³

<table>
<thead>
<tr>
<th></th>
<th>50–1000 kW (MW)</th>
<th>1–5 MW (MW)</th>
<th>5–20 MW (MW)</th>
<th>20–50 MW (MW)</th>
<th>50–100 MW (MW)</th>
<th>Total (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>74</td>
<td>294</td>
<td>270</td>
<td>108</td>
<td>148</td>
<td>894</td>
</tr>
<tr>
<td>Commercial</td>
<td>454</td>
<td>224</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>693</td>
</tr>
<tr>
<td>Total</td>
<td>528</td>
<td>518</td>
<td>285</td>
<td>108</td>
<td>148</td>
<td>1,587</td>
</tr>
</tbody>
</table>

Source:
2. www.eia.gov,
Attractive CHP Markets

Industrial
- Chemical manufacturing
- Ethanol
- Food processing
- Natural gas pipelines
- Petrochemicals
- Pharmaceuticals
- Pulp and paper
- Refining
- Rubber and plastics

Commercial
- Data centers
- Hotels and casinos
- Multi-family housing
- Laundries
- Apartments
- Office buildings
- Refrigerated warehouses
- Restaurants
- Supermarkets
- Green buildings

Institutional
- Hospitals
- Schools (K – 12)
- Universities & colleges
- Wastewater treatment
- Residential confinement

Agricultural
- Concentrated animal feeding operations
- Dairies
- Wood waste (biomass)
Favorable Characteristics for CHP Applications

- Concern about energy costs
- Concern about power reliability
- Concern about sustainability and environmental impacts
- Long hours of operation
- Existing thermal loads
- Central heating and cooling plant
- Future central plant replacement and/or upgrades
- Future facility expansion or new construction projects
- EE measures already implemented
- Access to nearby renewable fuels
- Facility energy champion
Iowa CHP Technical Potential in Commercial/Institutional Sector

Source: http://files.harc.edu/Sites/GulfCoastCHP/Publications/MarketCHPCommercialSector.pdf
CHP Technologies
And their Competitive Market Sizes

Reciprocating Engines
- Size Range: 10 kW to over 18 MW
- Advantages
 - Fast start-up and black start capability
 - Relatively low investment cost
 - Operate on low-pressure gas
 - Can be overhauled on site
 - High power efficiency with part-load operation flexibility
- Disadvantages
 - High maintenance costs
 - Limited to lower temperature CHP applications
 - Relatively higher emissions
 - High levels of low frequency noise

Microturbines
- Size Range: 30 kW to 330 kW (modular packages up to 1 MW)
- Advantages
 - Small number of moving parts
 - Compact size and light weight
 - Low NOx combustion capable of meeting CA standards with catalyst
- Disadvantages
 - Higher costs
 - Relatively lower mechanical efficiency
 - Limited to lower temperature CHP applications

Prime Mover Technologies
Reciprocating Engines and Microturbines

Reciprocating Engines

<table>
<thead>
<tr>
<th>CHP Capacity (kW)</th>
<th>100</th>
<th>633</th>
<th>1,121</th>
<th>3,326</th>
<th>9,341</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Efficiency (%), HHV</td>
<td>27.0%</td>
<td>34.5%</td>
<td>36.8%</td>
<td>40.4%</td>
<td>41.6%</td>
</tr>
<tr>
<td>Total CHP Efficiency (%), HHV</td>
<td>80.0%</td>
<td>78.9%</td>
<td>78.4%</td>
<td>78.3%</td>
<td>76.5%</td>
</tr>
<tr>
<td>CHP Equipment Cost ($/kW)</td>
<td>$1,900</td>
<td>$1,790</td>
<td>$1,475</td>
<td>$1,140</td>
<td>$925</td>
</tr>
<tr>
<td>Total Installed Cost ($/kW)</td>
<td>$2,900</td>
<td>$2,837</td>
<td>$2,366</td>
<td>$1,801</td>
<td>$1,433</td>
</tr>
<tr>
<td>Total O&M Costs ($/kWh)</td>
<td>$0.023 – 0.025</td>
<td>$0.021</td>
<td>$0.019</td>
<td>$0.016</td>
<td>$0.0085</td>
</tr>
</tbody>
</table>

Microturbines

<table>
<thead>
<tr>
<th>CHP Capacity (kW)</th>
<th>30</th>
<th>65</th>
<th>200</th>
<th>250</th>
<th>333</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Efficiency (%), HHV</td>
<td>22.0%</td>
<td>23.8%</td>
<td>26.7%</td>
<td>26.1%</td>
<td>28.0%</td>
<td>26.7%</td>
</tr>
<tr>
<td>Total CHP Efficiency (%), HHV</td>
<td>70.0%</td>
<td>70.4%</td>
<td>63.0%</td>
<td>66.09%</td>
<td>67.5%</td>
<td>63.1%</td>
</tr>
<tr>
<td>CHP Package Cost ($/kW)</td>
<td>$2,690</td>
<td>$2,120</td>
<td>$2,120</td>
<td>$1,840</td>
<td>$1,770</td>
<td>$1,710</td>
</tr>
<tr>
<td>Total Installed Cost ($/kW)</td>
<td>$4,300</td>
<td>$3,220</td>
<td>$3,150</td>
<td>$2,720</td>
<td>$2,580</td>
<td>$2,500</td>
</tr>
<tr>
<td>O&M Costs ($/kWh), average 6000 hrs/yr</td>
<td>---</td>
<td>$0.013</td>
<td>$0.016</td>
<td>$0.011</td>
<td>$0.009</td>
<td>$0.012</td>
</tr>
</tbody>
</table>

Source: http://www.epa.gov/chp/technologies.html
ProMedica Health System – Wildwood
Toledo, OH

Capacity: 130 kW
Fuel: Natural Gas
Prime Mover: Microturbines
Installed: 2013

Benefits include a reduction in annual energy costs and greenhouse gas emissions as well as a higher ENERGY STAR building score

Washtenaw Community College
Ann Arbor, MI

Capacity: 130 kW
Fuel: Natural Gas
Prime Mover: Microturbines
Installed: 2014

Benefits include a reduction of $60,000 in annual energy costs and reduced greenhouse gas emissions by an amount equivalent to 146 automobiles.

Sievers Family Farm
Stockton, IA

Capacity: 1,000 kW
Fuel: Biomass
Prime Mover: Recip. Engines
Installed: 2013

Electricity is sold to Alliant Energy, and waste heat is used for heating the anaerobic digesters

Source: http://www.americanbiogascouncil.org/projectProfiles/stocktonIA.pdf
Medina High School
Medina, OH

Capacity: 125 kW
Fuel: Natural Gas
Prime Mover: Recip. Engines
Installed: 2014

The new unit powers the school and heats the Medina Community Recreation Center’s two pools and spa, all while saving the school district $82,000 annually.

Dublin Community Recreation Center
Dublin, OH

Status: **Under Development**
Capacity: **248 kW**
Fuel: **Natural Gas**
Prime Mover: **Recip. Engine**
Complete by: **2015**

“This CHP solution is expected to save us $20,000 in energy costs over the next 5 years. It negates the need for our boiler replacement, which will save us approximately $70,000. The CHP system also provides backup power during a power outage, which will be a benefit to us and our guests.”

–Michelle Crandall, Dublin’s Assistant City Manager

Cedar Rapids Site 2 Landfill

Cedar Rapids, IA

Capacity: 1,600 kW
Fuel: Landfill Gas
Prime Mover: Recip. Engines
Installed: 2013

Instead of being flared off, landfill methane is captured and fuels the 1600 kW engine, saving the county’s Solid Waste Agency $90,000/yr while feeding the rural electrical grid.

Energy production from methane is a bonus for a methane collection system designed firstly to manage the landfill’s methane gas and to cut down on its odor.

Source: https://www.solidwasteagency.org/#/news/2012/08/22/cedar-rapid-gazette-article-about-agency-landfill-gas-to-energy-project
<table>
<thead>
<tr>
<th>Category</th>
<th>10 MW CHP</th>
<th>10 MW PV</th>
<th>10 MW Wind</th>
<th>10 MW NGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Capacity Factor</td>
<td>85%</td>
<td>22%</td>
<td>34%</td>
<td>70%</td>
</tr>
<tr>
<td>Annual Electricity</td>
<td>74,446 MWh</td>
<td>19,272 MWh</td>
<td>29,784 MWh</td>
<td>61,320 MWh</td>
</tr>
<tr>
<td>Annual Useful Heat Provided</td>
<td>103,417 MWh</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Footprint Required</td>
<td>6,000 sq ft</td>
<td>1,740,000 sq ft</td>
<td>76,000 sq ft</td>
<td>N/A</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$20 million</td>
<td>$60.5 million</td>
<td>$24.4 million</td>
<td>$10 million</td>
</tr>
<tr>
<td>Annual Energy Savings, MMBtu</td>
<td>308,100</td>
<td>196,462</td>
<td>303,623</td>
<td>154,649</td>
</tr>
<tr>
<td>Annual CO₂ Savings, Tons</td>
<td>42,751</td>
<td>17,887</td>
<td>27,644</td>
<td>28,172</td>
</tr>
<tr>
<td>Annual NOx Savings</td>
<td>59.9</td>
<td>16.2</td>
<td>24.9</td>
<td>39.3</td>
</tr>
</tbody>
</table>

Screening and Preliminary Analysis

- Quick screening questions with spreadsheet payback calculator.

Feasibility Analysis

- Uses available site information. Estimate: savings, installation costs, simple paybacks, equipment sizing and type.

Investment Grade Analysis

- 3rd Party review of Engineering Analysis. Review equipment sizing and choices.

Procurement, Operations, Maintenance, Commissioning

- Review specifications and bids, limited operational analysis.
Conclusion

- CHP systems offer numerous benefits
- Emerging drivers are increasing CHP opportunities
- Small-to-mid sized CHP prime movers are typically reciprocating engines and microturbines
- ERC through the Midwest CHP TAP can provide technical assistance resources to investigate CHP opportunities
Questions

Shelly Peterson, Iowa Economic Development Authority, State Energy Office
shelly.peterson@iowa.gov
515-725-0418

Clifford Haefke, Energy Resources Center, University of Illinois at Chicago
(U.S. DOE Midwest CHP Technical Assistance Partnership)
chaefk1@uic.edu
312-355-3476

www.erc.uic.edu www.MidwestCHPTAP.org